Search results for "Lysophosphatidic acid"
showing 10 items of 12 documents
Simultaneous lipidomic and transcriptomic profiling in mouse brain punches of acute epileptic seizure model compared to controls
2018
In this study, we report the development of a dual extraction protocol for RNA and lipids, including phospholipids, endocannabinoids, and arachidonic acid, at high spatial resolution, e.g., brain punches obtained from whole frozen brains corresponding to four brain subregions: dorsal hippocampus, ventral hippocampus, basolateral amygdala, and hypothalamus. This extraction method combined with LC/multiple reaction monitoring for lipid quantification and quantitative PCR for RNA investigation allows lipidomic and transcriptomic profiling from submilligram amounts of tissue, thus benefiting the time and animal costs for analysis and the data reliability due to prevention of biological variabil…
Protective Role for LPA3 in Cardiac Hypertrophy Induced by Myocardial Infarction but Not by Isoproterenol
2017
Background: We previously reported that lysophosphatidic acid (LPA) promoted cardiomyocyte hypertrophy in vitro via one of its G protein-coupled receptor subtypes, LPA3. In this study, we examined the role of LPA3 in cardiac hypertrophy induced by isoproterenol (ISO) and myocardial infarction. Methods: In vitro, neonatal rat cardiomyocytes (NRCMs) were subjected to LPA3 knocked-down, or pretreated with a β-adrenergic receptor (β-AR) antagonist (propranolol) before LPA/ISO treatment. Cardiomyocyte size and hypertrophic gene (ANP, BNP) mRNA levels were determined. In vivo, LPA3-/- and wild-type mice were implanted subcutaneously with an osmotic mini-pump containing ISO or vehicle for 2 weeks;…
Effects of the LPA1 Receptor Deficiency and Stress on the Hippocampal LPA Species in Mice
2019
Lysophosphatidic acid (LPA) is an important bioactive lipid species that functions in intracellular signaling through six characterized G protein-coupled receptors (LPA1-6). Among these receptors, LPA1 is a strong candidate to mediate the central effects of LPA on emotion and may be involved in promoting normal emotional behaviors. Alterations in this receptor may induce vulnerability to stress and predispose an individual to a psychopathological disease. In fact, mice lacking the LPA1 receptor exhibit emotional dysregulation and cognitive alterations in hippocampus-dependent tasks. Moreover, the loss of this receptor results in a phenotype of low resilience with dysfunctional coping in res…
Molecular cause and functional impact of altered synaptic lipid signaling due to a prg‐1 gene SNP
2015
Loss of plasticity-related gene 1 (PRG-1), which regulates synaptic phospholipid signaling, leads to hyperexcitability via increased glutamate release altering excitation/inhibition (E/I) balance in cortical networks. A recently reported SNP in prg-1 (R345T/ mutPRG-1) affects ~5 million European and US citizens in a monoallelic variant. Our studies show that this mutation leads to a loss-of-PRG-1 function at the synapse due to its inability to control lysophosphatidic acid (LPA) levels via a cellular uptake mechanism which appears to depend on proper glycosylation altered by this SNP. PRG-1 +/ mice, which are animal correlates of human PRG-1 +/mut carriers, showed an altered cortical networ…
LPA1, LPA2, LPA4, and LPA6receptor expression during mouse brain development
2019
Background:LPA is a small bioactive phospholipid that acts as an extracellularsignaling molecule and is involved in cellular processes, including cell prolifera-tion, migration, and differentiation. LPA acts by binding and activating at least sixknown G protein–coupled receptors: LPA1–6. In recent years, LPA has beensuggested to play an important role both in normal neuronal development andunder pathological conditions in the nervous system. Results:We show the expression pattern of LPA receptors during mouse braindevelopment by using qRT-PCR, in situ hybridization, and immunocytochemistry.Only LPA1,LPA2,LPA4,and LPA6 mRNA transcripts were detected throughoutdevelopment stages from embryoni…
Precise Somatotopic Thalamocortical Axon Guidance Depends on LPA-Mediated PRG-2/Radixin Signaling
2016
Summary Precise connection of thalamic barreloids with their corresponding cortical barrels is critical for processing of vibrissal sensory information. Here, we show that PRG-2, a phospholipid-interacting molecule, is important for thalamocortical axon guidance. Developing thalamocortical fibers both in PRG-2 full knockout (KO) and in thalamus-specific KO mice prematurely entered the cortical plate, eventually innervating non-corresponding barrels. This misrouting relied on lost axonal sensitivity toward lysophosphatidic acid (LPA), which failed to repel PRG-2-deficient thalamocortical fibers. PRG-2 electroporation in the PRG-2−/− thalamus restored the aberrant cortical innervation. We ide…
Altered synaptic phospholipid signaling in PRG-1 deficient mice induces exploratory behavior and motor hyperactivity resembling psychiatric disorders.
2017
Abstract Plasticity related gene 1 (PRG-1) is a neuron specific membrane protein located at the postsynaptic density of glutamatergic synapses. PRG-1 modulates signaling pathways of phosphorylated lipid substrates such as lysophosphatidic acid (LPA). Deletion of PRG-1 increases presynaptic glutamate release probability leading to neuronal over-excitation. However, due to its cortical expression, PRG-1 deficiency leading to increased glutamatergic transmission is supposed to also affect motor pathways. We therefore analyzed the effects of PRG-1 function on exploratory and motor behavior using homozygous PRG-1 knockout (PRG-1−/−) mice and PRG-1/LPA2–receptor double knockout (PRG-1−/−/LPA2−/−)…
NT-3 protein levels are enhanced in the hippocampus of PRG1-deficient mice but remain unchanged in PRG1/LPA2 double mutants
2015
The plasticity-related gene 1 (PRG1) modulates bioactive lipids at the postsynaptic density and is a novel player in neuronal plasticity and regulation of glutamatergic transmission at principal neurons. PRG1, a neuronal molecule, is highly expressed during development and regeneration processes at the postsynaptic density, modulates synaptic lysophosphatidic acid (LPA) levels and is related to epilepsy and brain injury. In the present study, we analyzed the interaction between the synaptic molecules PRG1 and LPA2R with other plasticity-related molecules the neurotrophins. The protein levels of NGF, BDNF and NT-3 were measured using ELISA in hippocampal tissue of homozygous (PRG(-/-)) and h…
Plasticity-related gene-1 inhibits lysophosphatidic acid-induced vascular smooth muscle cell migration and proliferation and prevents neointima forma…
2012
International audience; Plasticity-related gene-1 (PRG-1) protects neuronal cells from lysophosphatidic acid (LPA) effects. In vascular smooth muscle cells (VSMCs), LPA was shown to induce phenotypic modulation in vitro and vascular remodeling in vivo. Thus we explored the role of PRG-1 in modulating VSMC response to LPA. PCR, Western blot, and immunofluorescence experiments showed that PRG-1 is expressed in rat and human vascular media. PRG-1 expression was strongly inhibited in proliferating compared with quiescent VSMCs both in vitro and in vivo (medial vs. neointimal VSMCs), suggesting that PRG-1 expression is dependent on the cell phenotype. In vitro, adenovirus-mediated overexpression…
Guanine inhibits the growth of human glioma and melanoma cell lines by interacting with GPR23
2022
Guanine-based purines (GBPs) exert numerous biological effects at the central nervous system through putative membrane receptors, the existence of which is still elusive. To shed light on this question, we screened orphan and poorly characterized G protein-coupled receptors (GPRs), selecting those that showed a high purinoreceptor similarity and were expressed in glioma cells, where GBPs exerted a powerful antiproliferative effect. Of the GPRs chosen, only the silencing of GPR23, also known as lysophosphatidic acid (LPA) 4 receptor, counteracted GBP-induced growth inhibition in U87 cells. Guanine (GUA) was the most potent compound behind the GPR23-mediated effect, acting as the endpoint eff…